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Site percolation problems and multi-site Potts models 

H N V Temperley and S E Ashley? 
Department of Applied Mathematics, University College, Swansea, SA2 8PP, UK 

Received 2 June 1981 

Abstract. The correspondence discovered by Kunz and Wu (1978) between the site 
percolation problem and the multi-site Potts problem is extended to several lattices. It is 
found that the site percolation problem can be very simply formulated in terms of the 
operators used by Temperley and Lieb (1971). In three instances applying the dual 
transformation to these operators induces the matching transformation found by Sykes and 
Essam (1964) and it is conjectured that this may hold generally. It follows that site 
percolation problems, like bond percolation problems, depend on finding eigenvalues of 
row transfer operators. 

1. Introduction 

Kunz and Wu (1978) have shown that site percolation problems on various planar 
lattices are closely related to multi-site Potts problems on related lattices. Each 
percolation site is replaced by a ‘city’ of surrounding sites. One possibility is to choose a 
percolation site at the centre of each bond of the Potts lattice. The Potts sites are 
coloured with q colours and we give the ‘city’ of Potts sites a weight (1 + g) if all its sites 
are coloured alike, otherwise a weight 1. We also introduce a ‘magnetic field’, that is to 
say we give a weight e L  to any site on the Potts lattice that is coloured with a particular 
colour (red say). Let *(q,  g, L) be the corresponding generating function for this Potts 
problem. A city with all Potts sites coloured alike is identified with a ‘black’ site in the 
percolation problem; a city with any other colouring is identified with a ‘white’ site in 
the percolation problem. If two ‘black’ sites are neighbours in the percolation lattice, 
the corresponding cities of Potts sites have exactly one Potts site in common, namely 
that corresponding to the bond. Using this fact Kunz and Wu defined a ‘free energy’ as 

and showed that the percolation probability and the mean-square size of cluster are 
related to the ‘spontaneous magnetisation’ and the ‘zero-field susceptibility’, that is to 
the first and second derivatives of the ‘free energy’ (1) with respect to L in the limit 
L + 0. In their formulae, the probability p that a site is black is to be identified with the 
ratio g/(l + g). 

Baxter et a1 (1978) have shown that one particular multi-site Potts problem, a plane 
triangular lattice with three-site Potts-type interactions around alternate triangles, has 
an extremely simple formulation in terms of the operators introduced by Temperley 
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and Lieb (1971). For q = 2 it reduces to the Ising problem on the plane triangular 
lattice, but we did not succeed in solving it for general q. We were able to locate the 
critical value of g (this is simply equal to q, the number of colours.) We show that this 
problem, in the limit q + l ,  is precisely the site percolation problem on the plane 
triangular lattice. It was found by Sykes and Essam (19641, that the critical value of p 
for this problem is and our work agrees with this. 

We shall also show that the site percolation problems for various other lattices 
considered by Sykes and Essam (1964) can also be formulated, though not solved, in 
terms of eigenvalue problems involving simple looking Temperley-Lieb operators and 
that the relationship between a pair of matching lattices found by Sykes and Essam 
(1964) is equivalent to the ‘dual’ tranqformation applied to the Temperley-Lieb 
operators. Thus, the ‘site’ problems as well as the ‘bond’ problems can now be 
formulated as eigenvalue problems involving Temperley-Lieb operators. (As shown 
by Temperley and Lieb (1971), the bond percolation problem only needs operators 
involving two-site interactions between neighbouring sites.) 

It is also known (Temperley and Lieb 1971, Baxter 1973) that the generating 
function for the bond percolation and the two-site Potts problems can be expressed as a 
Whitney-Tutte polynomial, that is to say as a sum over all the subgraphs obtained by 
removing bonds from the lattice but leaving all the sites. The generating function is 

where (1 + f )  is the weight given to a neighbouring pair of sites coloured alike (an unlike 
neighbouring pair being given a weight unity). In each subgraph, c is the number of 
separate components, an isolated site being reckoned as one component, and I is the 
number of bonds the subgraph contains. For the bond percolation problem the 
expected number of separate components is 

a 
lim -((In cp(q, f),. 131 
q - 1  aq 

This is because, for q = 1, ( ~ ( 4 ,  f) reduces trivially to (1 + f ) “ ,  where L is the total number 
of bonds in the lattice, so (3) reduces to 

that is, to the expected number of separate components when the probability that any 
given bond is active is f/(l +f) and the probability that it is not active is 1/(1 + f i .  

Kunz and Wu’s result (1978) is that the site percolation problem is related to the 
corresponding limit of a Potts problem involving multi-site interactions. This problem 
can also be expressed as a ‘hypergraph’ expansion analogous to (2), in which we assign 
weights to the elementary triangles or squares of the lattice contained by each subgraph. 

2. Subgraph expansion for the site percolation problem 

Instead of (2) our generating function is 

where the sum is now over all the subgraphs obtained by ‘blackening’ one or more sites 
of the lattice. n is the number of black sites in the subgraph and we imagine all bonds on 
the lattice that connect neighbouring black points to be drawn in and c is the number of 
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black connected components. (An isolated black site is counted as a component.) The 
expected number of components is obtained from ( 5 )  by differentiating In with 
respect to q, afterwards letting q + 1. In this limit, 4 itself reduces to (1 + g ) N  where N is 
the total number of sites in the lattice. The probability that a given site is blackened is 
then g/(l + g ) .  

We state the following result without formal proof. Consider the medial lattice LM 
formed from our planar lattice L by taking the mid-points of each bond as sites in L M  
and joining up such neighbouring mid-points. 

In figure 1, let the dots correspond to blackened sites on L and the crosses to sites on 
LM, both being plane square lattices. Then there is 1-1 correspondence between 
graphs formed by blackening sites on L and hypergraphs on L M  formed by combining 
one or more shaded squares. (Only alternate squares on LM are shaded). Furthermore, 
the existence of a bond between two neighbouring blackened sites on L corresponds to 
a site common to two neighbouring shaded squares of L M .  

X 

X x 
Figure 1 

For the plane triangular and plane hexagonal lattices the medial lattice is the 
kagomC lattice. 

Figure 2 ( a )  illustrates the fact that each blackened site (dot) in the plane triangular 
lattice is surrounded by an elementary hexagon in the kagomC lattice L M  (crosses). 
Figure 2 ( b )  illustrates the correspondence between blackened sites in the plane 
honeycomb lattice and elementary triangles of L M .  
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Figure 2 
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There is, however, another way in which we can associate a ‘surrounding’ lattice 
with possible ways of blackening sites in the plane triangular lattice. In the place of LM 
we can use L’ obtained by taking the central points of all the ‘up’ triangles in L‘ as sites of 
L. 

In figure 3 dots represent a typical blackening of some of the sites of L and a 
corresponding choice of ‘down’ elementary triangles (shaded) in L‘, the vertices of 
which are marked by crosses. 

Figure 3 

We can therefore say that if L is the plane square, honeycomb or triangular lattices 
we can find ‘surrounding’ lattices such that a point of L corresponds to an elementary 
polygon of the surrounding lattice. In other words, there is a correspondence between a 
choice of sites of L and modes of colouring L’ or LM such that all the sites in certain 
elementary polygons of L’ or LM are coloured alike. For elementary polygons that are 
triangles or squares it is, as we shall now show, relatively easy to write down operators 
that give a weight of (1 + g) to colourings such that all the sites in an elementary polygon 
are coloured alike and a weight of 1 for all other colourings of the sites in this polygon. 

3. Row transfer operator form of the multi-site Potts problem 

Various representations of the Temperley-Lieb operators are given by Baxter er a1 
(1978, 0 5 ) .  We shall need only the following properties. 

ql” U12: Attention is transferred from site A to site A’. Regardless of the colouring 
of site A, site A’ in the next row is coloured with each of the q colours with equal 
probability. We may represent the effect thus: 

RA-*RA.+ YA+Ga,+ .  . . , YA+RA’f YAj+GA,+. . . , etc. 

IAA,:  Sites A and A’ are coloured alike: 

RA +RA, ,  YA* YA’ etc. 

q1’2U34 and IBBt. Analogous operators involving the sites B and B‘. 
U23/~7”~: If sites A and B are coloured alike, introduce a factor 1, otherwise 

introduce a factor zero. Thus RARE + RARB, RA Ye + 0, etc. (Similarly, if it acts on the 
pair of sites A’, B it has the effect RA’RB * RA’RB, RA, YB + 0, etc.) IAB has the effect 
RARE +RARE, RA YB +RA YB, etc and acts similarly on RA’RB, RA’ YB, etc. 

U45/q1’2 and Isc: Similar effects on a neighbouring pair of sites B, C; B’, C ;  etc. 
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Using the operators U12, U23 and their two products, we can represent the effect of 
all Potts-type two-site and three-site interactions within the triangle of sites AEA’, sites 
A and B being in the same row and site A’ in the next row; Baxter et a1 (1978). For the 
particular case of purely three-site interaction within this triangle we found the operator 

q 1 / 2 u 1 2 + g u 2 3 / q 1 / 2  (6 )  

which gives a weight (1 + g) if all three sites A, A’, B are coloured alike, and unity 
otherwise. If we multiply (6) on the left by the similar operator q1/2U34 + gU45/q1l2, we 
introduce similar weightings for the triangle of sites B, B‘, C. Figure 4 shows that a 
product of such factors gives the row transfer operator for a triangular lattice with 
three-site interactions around all the ‘up’ triangles. The function CL to be inserted into 
(1) is the appropriate powerof the largest eigenvalue of this operator. 

Figure 4 

We have not yet solved this eigenvalue problem but we deduced two pieces of 
information. The U operators obey the relations 

U:, = q1l2u12 ~ g 3  = q1l2 ~ 2 3 ,  etc 
(7) 

VIZ U23 U12 = U12, etc U23 U12 U23 = U23 

(two operators without a suffix in common commute). We use the dual transformation 

u12’u23+ U34’U45. * * (8) 
which transforms (6) into the corresponding operator for the ‘down’ triangle A’BB’ if 
g = q. (As usual, we assume that this locates the transition.) For q = 1, the critical value 
of g is 1 and consequently pc = $ agreeing with the result obtained by Sykes and Essam 
(1964). The relation (123) of Baxter et a1 deduced from (8), gives us simply that at 
critical, the number of black sites is $V, which is obvious since the critical probability is 1. 
Thus, it gives us no new information for the percolation case q = 1. 

We can use the properties of the U operators enumerated above to describe 
four-site interactions. For the square of sites A’BB‘A’’ (figure 5 )  we deduce the 
operator 

q1/2u12q1/2 U34 + gU23/q1I2 (9) 
which gives a weight (1 + g )  if all four points are coloured alike and unity otherwise. If 
we now multiply this on the left by 

q1/2u34q1’2u56+gu45/q1/2 (10) 
we introduce a similar interaction around the square B’CC’B“ in figure 5 .  We have to 
start from B‘ rather than B, because, since U12 and U34 are both present in operator (9), 
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I 

A 

Figure 5 

the effect of it has been to transfer attention from sites A,  B to sites A',  B' ,  so site B' is 
the starting point for operator (10). That is to say we are introducing four-site 
interactions around alternate squares in the plane square lattice. Figure 5 shows that it 
is being extended towards the North-West as each row is added. Figure 1 then 
illustrates the correspondence between choices of black sites on L and patterns of 
shaded squares on LM. Thus a product of operators such as (9) and (10) reduces to the 
row transfer operator related to the site problem on the plane square lattice. 

The application of the dual transformation (8) to operator (6) produces an 
equivalent operator with, in general, a new value of g. No such equivalence applies if we 
apply the dual transformation (8) to operators (9) or (10). We can interpret the 
transformed operators. To a multiplying factor (9) transforms into 

g'U23 u45/q + q u34. (1 1) 

Consider now a square lattice with sites labelled as in figure 6 ( a ) .  Operator (11) 
describes interactions within the square A'BCB' at the same time transferring attention 
from site B to site B'. As before, the operator q*'2 U34 gives a weight unity whatever 
colour we assign to B', while the operator U23U45 gives a non-zero contribution only if 
sites A' ,  B and C are all coloured alike and, when attention is transferred from B to B', 
such a configuration is converted into one in which A', B' and C are all coloured alike. 
Thus, operator (11) also introduces a weighting factor (1 + g') whenever the four sites 
A', B, C, B' are coloured alike and a factor 1 for all other colourings. If we now apply 
the operator g'U45 U67/q + q1'2U56 we introduce similar weights for possible colourings 
of the square B'CDC'. That is to say that the product of operators like (11) introduces 
four-site interactions around every square, not around alternate squares as do products 
of operators like (9) and (10). 
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Figure 6 

We can relate operator (10) to a site percolation problem by introducing a 
blackened site into the centre of every square of the plane square lattice whenever its 
four corners are coloured alike. Thus, in figure 6(b), if sites P and R are both 
blackened, the group of seven surrounding sites must be all coloured alike, so sites P 
and R must be connected. Similarly, the blackening of sites P and Q implies that the 
group of six surrounding sites must all be coloured alike, so P and Q must be joined in 
the percolation lattice. We conclude that the percolation problem to which a product of 
operators like (1 1) reduces as q + 1 is the plane square lattice with both diagonals in 
every square. This is just the ‘matching’ lattice of the plane square lattice found by 
Sykes and Essam (1964). Thus their matching transformation is the particular case 
when q + 1 of our transformation (8). 

We can also write down the operator corresponding to three-site interactions 
around all triangles of the plane triangular lattice. Thus in figure 6(a), such an 
interaction around the triangle A’BB’ corresponds to the operator 

g”u23/q1’2 + q1’2 u34. (12) 

The corresponding operator that produces three-site interactions around the two 
triangles A’BB’, BCB’ in the square A’BB’C (figure 7) is found to be 

(13) q1I2u34+ gU23/q1l2 + gu4*/q112 + g2u23u45/q 

and a product of such operators will add further squares like B’CDC’, etc. Interpreting 
this operator by inserting sites of the percolation lattice at the centre of each triangle, we 
arrive at the matching lattice of the plane honeycomb lattice (Sykes and Essam 1964). 
Applying the dual transformation (8) to the operator (13) we obtain the operator for the 
plane honeycomb lattice. 

Figure 7 
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4. Conclusion 

The operators corresponding to various site percolation problems are of relatively 
simple form and such problems, like bond percolation problems, can be expressed in 
terms of row transfer operators. Our work suggests, though it does not formally prove, 
that our dual transformation is the same as the Sykes and Essam matching trans- 
formation. 
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